【寻味中华】武汉五芳斋汤圆:白如羊脂 甜蜜馥郁******
中新社武汉2月4日电 题:武汉五芳斋汤圆:白如羊脂 甜蜜馥郁
作者 武一力
中国人的“年味”,体现在活色生香的食俗里。享尽天南海北的“硬菜”后,汤圆开始登上餐桌“C位”。
临近元宵节,每天凌晨四五点钟,“中华老字号”武汉五芳斋门口就排起长队。食客翘首以盼,等候汤圆出锅。
资料图:“叠式汤圆”也称“滚汤圆” 张畅 摄1946年,以跑船为生的江苏人倪锦财落脚汉口,成立武汉五芳斋,经营江浙风味的汤圆。发展至今,五芳斋在武汉已是三镇皆知、远近闻名;武汉“五芳斋汤圆”也被认定为中国名点、中华名小吃。
正如豆腐脑有“咸甜之争”,汤圆的吃法也有地域之分。
“按叫法,南方叫‘汤圆’,北方叫‘元宵’;按做法,南方包汤圆,北方滚元宵;按口味,有甜有咸。”武汉五芳斋汤圆制作技艺市级代表性传承人李杰告诉中新社记者。
广东有四式汤圆、贵州有鸡肉汤圆、上海有擂沙汤圆,而五芳斋的黑芝麻馅叠式汤圆则是“老武汉”的心头爱。
李杰说,叠式汤圆如此受欢迎,在于两大法宝:一是制馅,二是制面。取适量芝麻、些许猪板油,辅之以白糖、橘皮,揉搓成馅心。猪板油来自东北,当地猪膘厚一点,油脂好一点,更能提香。面皮选用上好的糯米粉,用水磨吊浆工艺使其口感更加爽滑。
叠式汤圆,“叠”为重头戏。据李杰介绍,按照传统做法,把馅心和糯米粉铺在簸箕上,端起簸箕“摇团”,类似农村的筛糠。再在汤圆上洒上冷水,继续“摇团”。如此反复多遍,汤圆越摇越大。如今,自动化机器代替了手工“摇团”——只需将馅心倒进装有糯米粉的机器大锅中翻滚,再蘸水打湿,层层叠加16次,一颗颗直径约3厘米的叠式汤圆就出锅了。
如此制作的五芳斋叠式汤圆皮薄而滑,白如羊脂,油光发亮,具有香、甜、鲜、滑、糯的特点。煮熟后的汤圆大小似乒乓球,轻轻咬开一个小口,热腾腾的芝麻馅缓缓淌出。看一眼,口齿生津;闻一闻,香气扑鼻;尝一口,芝麻醇厚,糯米绵密,口感瓷实,甜蜜馥郁。
据传,汤圆起源于宋朝,在沸水中翻滚的汤圆亦沉亦浮,犹如空中圆月,被世人赋予“阖家团圆”的美意,流传至今。
关于汤圆的吃法,古今“吃货”各有花样。清代诗人袁枚在《随园食单》中记载了“可盐可甜”的两样做法。咸口的萝卜汤圆:“萝卜刨丝滚熟,去臭气,微干,加葱、酱拌之,放粉团中作馅。”甜口的水粉汤圆:“用水粉和作汤圆,滑腻异常,中用松仁、核桃、猪油、糖作馅……”如今,汤圆还发展出榴莲馅、巧克力馅等新口味,以及油炸、拔丝等新吃法。
“吃了汤圆才团圆。”一个月前,武汉市民万静芳就早早地给身在美国的女儿寄去糯米粉和汤圆馅心,希望这份家乡味道能给远方的孩子传递思念和祝福。
天上月圆,碗里汤圆,人间团圆。元宵佳节,亲朋围坐,推杯换盏,最后来碗汤圆收尾,期盼新一年的温暖与甜蜜。(完)
静心探索重要的基础科学问题不求“短平快”70后物理学家翁红明****** 翁红明在讲解电子运输理论。 田春璐摄 人物简介: 翁红明,1977年出生,现为中国科学院物理研究所凝聚态理论与材料计算实验室研究员、博士生导师。主要致力于凝聚态物理计算方法和程序的开发以及新奇量子现象的计算研究,成果入选2015年度中国科学十大进展、英国物理学会《物理世界》2015年度十大突破、美国物理学会《物理评论》系列期刊创刊125周年纪念文集等。 在中科院物理研究所(以下简称“物理所”)的年轻人里,研究员翁红明是小有名气的一位。就在刚刚过去的2022年,他因在数学物理学领域的杰出贡献,获得第四届“科学探索奖”。 在国际计算凝聚态物理研究领域,翁红明成果颇丰。其中最为人称道的,是他和同事们合作首次在固体中观测到外尔费米子和三重简并费米子的准粒子。这是国际上物理学研究的重要科学突破,对拓扑电子学和量子计算机等颠覆性技术的诞生具有非常重要的意义。 自由思考、厚积薄发,真正对人类文明有所贡献 1928年,英国物理学家保罗·狄拉克提出了描述相对论电子态的狄拉克方程。1929年,德国科学家赫尔曼·外尔指出,当质量为零时,狄拉克方程描述的是一对重叠的具有相反手性的新粒子,即外尔费米子。这种神奇的粒子带有电荷,却不具有质量,因而具有确定的手性(指一个物体不能与其镜像相重合,如我们的双手,左手与右手互成镜像,但不能重合)。 但是80多年过去了,科学家们一直没有能够在实验中观测到外尔费米子。直到2015年1月初,中科院物理所方忠研究员带领的研究组与普林斯顿大学研究小组合作,从理论上预言了在以砷化钽为代表的一批材料中存在着外尔费米子。此后,这个理论预言经过实验得到了进一步验证。 在研究过程中,翁红明发挥了至关重要的作用。他从发表于1965年的一篇实验文献中受到启发,并通过第一性原理计算,初步认定砷化钽晶体等同结构家族材料可能是无需进行调控的、本征的外尔半金属。这类材料能够合成,没有磁性,没有中心对称,是实验制备、检测都非常便捷的绝佳材料。 翁红明说:“这一发现的难度在于,从众多材料中找到合适的对象犹如大海捞针,必须对外尔费米子和材料物理特性都有相当认识才行。” 在外尔费米子被发现的一年后,翁红明和同事们又进一步“预言”:在一类具有碳化钨晶体结构的材料中存在三重简并的电子态。 2017年6月,这个新预言被实验证实,三重简并费米子被首次观测到。这是物理所科研团队继拓扑绝缘体、量子反常霍尔效应、外尔费米子之后,在拓扑物态研究领域取得的又一次重要突破,引起国际物理学界广泛关注。 成绩源于多年的深耕积累。翁红明很享受在物理所工作的经历:“这无关荣誉,我找到了更感兴趣、更加深入的研究领域和方向。” 自由思考、厚积薄发,一直是翁红明喜欢的学术氛围。他所追求的不是多发表文章,而是能攀登科学高峰,真正对人类文明有所贡献。 科研仅靠一个人或一个小组的力量是不够的 作为理论物理学家,翁红明专攻量子材料的计算和设计。 物理学通常分成两大类,即理论物理和实验物理。理论物理通过理论推导和公式推算得出的结论被称为“预言”,“预言”必须通过实验验证才能成为国际公认的科学事实。 在翁红明看来,他接连获得的几次重大发现,都离不开与同事们的通力合作。这,也是他做科研一直特别重视的一点。 “理论预言、样品制备和实验观测,这三个环节缺一个都不行。”翁红明说,“在当今科学领域细分程度非常高的情况下,科研仅靠一个人或一个小组的力量是不够的。当有重要任务目标时,我们几个小组紧密合作,在理论、样品、实验等环节实现了环环相扣、无缝对接。” 在许多人的想象中,理论物理学家的工作,就是每天独自埋头在稿纸堆里计算推演,然后坐着冥思苦想、灵光乍现。 但翁红明认为,计算推演的确要做,思考分析也不可少,但和同行们的交流也非常重要。他每天上班的第一件事就是查看和了解国际上最新的科研进展,然后分析、思考、计算,再把自己的想法跟同事们交流。“很多时候,我的一些想法,或者说突然的一些灵感,其实都是在思考、交流和工作过程当中产生的。” “发现三重简并费米子”这一成果,就源于翁红明和石友国、钱天两位同事一次喝咖啡时的思想碰撞。 物理所的咖啡厅在学术界享有盛誉,不但因为咖啡好喝,也因为常有科研人员汇聚在此畅聊科学、各抒己见,聊着聊着,灵感经常“火花四射”。 和大家一样,翁红明、石友国和钱天工作之余也喜欢在咖啡厅一聚。翁红明有什么新想法会第一时间告诉他俩;石友国和钱天在实验过程中有什么新发现或疑惑,也会第一时间反馈给翁红明。 “闲聊中就能交换信息,我们的交流是完全敞开的,毫无保留地让大家知道彼此做了什么。”翁红明说。 翁红明告诉记者,在科研道路上,自己非常珍视的成功秘诀有两个,一个是注意总结和积累,另一个就是跟别人多交流。 “目前我努力发展基于大数据和人工智能的凝聚态物质科学研究,其实也是基于这两点考虑,因为所有人的知识积累都体现在这些数据当中。”翁红明说。 做研究应该抓住一些更新奇、更本质的问题 1977年,翁红明出生在江苏泰兴一户普通人家。他的父母都是农民,家里还有一个姐姐。 初中开始,翁红明第一次接触到物理,从此便沉迷其中。“物理让我对周围的世界有了更深入的了解和认识。”翁红明说。 兴趣是最好的老师。对物理的热爱,指引着翁红明叩开了物理科学的大门。 1996年,翁红明参加高考。在填报志愿时,他毫不犹豫地将所有的志愿都填上了物理。最终,他如愿被南京大学物理系录取。 南京大学的物理系在凝聚态物理领域积淀很深。翁红明在这一领域进行相关知识的学习与研究,一学就是9年,直到博士毕业。毕业后,他去了日本的东北大学金属材料研究所做博士后研究,主要研究各种材料的导电性质。 到日本一年半后,翁红明萌生了转换研究方向的想法。 “我想要转到计算方法和程序的发展上,这是凝聚态物理领域中一个最基础也是最具有核心竞争力的方向。”翁红明说,“如果想要在这个领域有长远发展,就要在这个方向上有一定的积累。”在他看来,静下心来探索重要的基础科学问题,要比做一些“短平快”研究更有意义。 想归想,但真正下定决心,翁红明也经过了一番纠结。 他坦言:“当转到一个更基础的方向,也意味着你在未来的几年甚至是更长的时间里都需要耐得住坐冷板凳。所以必须做好思想准备,去做一些积累性的工作。” 2008年,翁红明的人生又有了一次重大转折。 那一年,物理研究所研究员、博士生导师方忠到日本访问交流,翁红明跟他进行了深入的交谈和讨论。 翁红明告诉记者:“他跟我介绍了当时做的一项很有意思的工作。虽然我那时并没有很深刻的理解,却受到很大的启发——做研究应该抓住一些更新奇、更本质的问题。” 在方忠的影响下,2010年,翁红明决定回到国内,入职物理研究所,成为方忠团队的一名成员。 翁红明说:“每个人在一生当中可能会跟很多人交往交谈,但在人生重要转折时刻能够给你启发的却不多。能有这样的机遇去跟方忠老师交流并受到启发,我觉得这是非常宝贵和幸运的。” 在新的一年里,翁红明说自己有很多研究工作要做,尤其是如何在拓扑电子学器件研究方面取得突破,促使拓扑电子态理论变成可落地应用的技术。而这,需要跟器件和应用等方向的研究人员进行交流和讨论。 翁红明相信,拓扑时代的黎明时分正在临近。(记者 吴月辉) 中国网客户端 国家重点新闻网站,9语种权威发布 |